Phase-integral method for the radial Dirac equation
نویسندگان
چکیده
منابع مشابه
Phase Space Path Integral for the Dirac Equation
A c-number path integral representation is constructed for the solution of the Dirac equation. The integration is over the real trajectories in the continuous three-space and other two canonical pairs of compact variables controlling the dynamics of the spin and the chirality flips. The problems to overcome in order to find a c-number path integral representation for the solution of the Dirac e...
متن کاملStabilized finite element method for the radial Dirac equation
A challenging difficulty in solving the radial Dirac eigenvalue problem numerically is the presence of spurious (unphysical) eigenvalues among the correct ones that are neither related to mathematical interpretations nor to physical explanations. Many attempts have been made and several numerical methods have been applied to solve the problem using finite element method (FEM), finite difference...
متن کاملThe radial basis integral equation method for 2D Helmholtz problems
A meshless method for the solution of 2D Helmholtz equation has been developed by using the Boundary Integral Equation (BIE) combined with Radial Basis Function (RBF) interpolations. BIE is applied by using the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source point always in the ...
متن کاملPath Integral for the Dirac Equation
A c-number path integral representation is constructed for the solution of the Dirac equation. The integration is over the real trajectories in the continuous three-space and other two canonical pairs of compact variables controlling the spin and the chirality flips. The path integral representation of the quantum amplitudes [1] has become an essential device in the development of an intuitive ...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2014
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4895575